OVERSHOOTING AND THE μ -BARRIER

V. M. CANUTO^{1,2}

Received 1998 August 3; accepted 1998 September 18; published 1998 October 15

ABSTRACT

Using general arguments and without numerical calculations, we present three complementary "proofs" that the extent of overshooting (OV) outside a convective region is decreased by a gradient of the mean molecular weight.

Subject headings: convection — stars: evolution — stars: interiors — Sun: evolution — Sun: interior — turbulence

As discussed in an earlier work (Canuto 1997, where relevant references to recent work can be found), we still do not have a theoretical prediction that matches the observational suggestions that both for the Sun (below the convective zone) and for massive stars the "extent of overshooting" (OV) is a small fraction of the local pressure scale height. In massive stars, there is a further consideration: the mean molecular weight μ is an effective barrier to the fluid elements that overshoot into the radiative region. Thus, two barriers actually exist: stable stratification and a μ -gradient (e.g., Ledoux 1947; Schwarzschild & Harm 1958; Kato 1966; Stothers 1970; Langer, Sugimoto, & Fricke 1983; Umezu 1998). Since overshooting is a dynamical consequence of Newton's law and as such is unavoidable, we formulate the problem as follows: given an OV (which cannot be zero) computed as if the medium were homogeneous $(\nabla_{\mu} = 0, \nabla_{\mu} \equiv \partial \ln \mu / \ln P)$, what is the effect of a μ -gradient? In this Letter we prove the following result:

$$OV(\nabla_{u}) < OV(\nabla_{u} = 0). \tag{1}$$

Of the dynamic equations necessary to describe nonlocal convection (Canuto 1997; Canuto & Dubovikov 1998), we employ only the one for the turbulent kinetic energy K:

$$\frac{\partial K}{\partial t} + D_f(K) = g\alpha J - \epsilon. \tag{2}$$

Here, g is the local gravity, α is the thermal expansion coefficient ($\equiv -\rho^{-1}\partial\rho/\partial T$), J is the convective flux F_C in units of $c_P\rho$, $F_C = c_P\rho J = c_P \langle \rho w\theta \rangle$ (c_P and ρ are the specific heat and density), θ and w are the fluctuating components of the temperature and velocity (in the z-direction), and ϵ is the rate of dissipation of K. The key ingredient for the description of overshooting is nonlocality, which in equation (2) is represented by $D_f(K)$, the divergence of the flux of turbulent kinetic energy F_{ve} ,

$$D_f(K) = \frac{\partial}{\partial \tau} F_{\kappa \epsilon}, \quad F_{\kappa \epsilon} = \langle wK \rangle.$$
 (3)

Equations (2) and (3) are exact since no approximation (closure) is necessary for their derivation (except of course the Boussinesq approximation, which is well satisfied when

OV $\ll H_p$). The local, stationary limit of equation (2) yields the MLT (mixing length theory): the right-hand side of equation (2) vanishes, implying that production equals dissipation. Since by Kolmogorov law, $\epsilon = K^{3/2}\Lambda^{-1}$ (Λ is the "size" of the largest eddy), $J \sim K^{3/2}$, which is the MLT expression.

How does equation (2) change in the presence of a μ -gradient? One can study the problem using the exact equations for the temperature, velocity and arbitrary concentration field C (Canuto 1998). Here, we follow a more physical procedure. Consider the thermal expansion coefficient α that enters equation (2). It originates from the expansion of the density $\rho = \langle \rho \rangle + \rho'$, where

$$\frac{\rho'}{\rho} = -\alpha\theta. \tag{4}$$

In the presence of an additional scalar field like a concentration, one has instead

$$\frac{\rho'}{\rho} = -\alpha\theta + \alpha_C c'', \quad \alpha_C = \left(\frac{\partial \ln \rho}{\partial C}\right)_{P,T},\tag{5}$$

where C is the mean concentration and c'' is the fluctuating part of the C field. Much as θ combines with the velocity w to give rise to J in equation (2), the new term c'' does likewise and equation (2) becomes

$$\frac{\partial K}{\partial t} + D_f(K) = g\alpha J - g\alpha_c \Psi - \epsilon, \tag{6}$$

where the "concentration flux" Ψ is defined as (H_P is the pressure scale height)

$$\Psi = \overline{c''w} = -K_C \frac{\partial C}{\partial z} = \alpha_C^{-1} H_P^{-1} K_C \nabla_{\mu}. \tag{7}$$

Here, K_C is the "turbulent diffusion coefficient," which only a full model of turbulence can provide (Canuto 1998) but whose specific form is not needed for our argument. Substituting equation (7) into equation (6), we obtain the desired equation for K:

$$\frac{\partial K}{\partial t} + D_f(K) = g\alpha J - (\epsilon + gK_C H_P^{-1} \nabla_{\!\!\mu}). \tag{8}$$

The physical interpretation is quite clear: ∇_{u} increases the dis-

¹ NASA, Goddard Institute for Space Studies, 2880 Broadway, New York, NY, 10025.

² Department of Applied Physics, Columbia University, New York, NY, 10027.

sipation rate ϵ , thus it increases the sink and lowers K. With less available kinetic energy, one has a smaller overshooting. This result alone, which is model independent, proves our basic relation (eq. [1]). However, we can present the result in a more transparent form. Let us combine equation (6) with flux conservation law, $F_r + F_C + F_{\kappa\epsilon} = F_N$ (the source of the total flux is denoted by N, nuclear), where F_r is the radiative flux whose form need not be specified here. Eliminating $J = F_C(c_P \rho)^{-1}$ between equation (8) and the latter relation, the stationary limit of equation (8) becomes a first-order differential equation in $F_{\kappa\epsilon}$ that can be integrated. Calling $r_{1,2}$ the beginning and end points of the entire convective zone (including overshooting) and r_* (with $r_1 < r_* < r_2$) the point where the convective flux F_{c} goes from positive to negative, signaling the beginning of the OV proper, and introducing the luminosities $L = 4\pi r^2 F$, one derives

$$\frac{g}{c_{p}} \int_{r_{1}}^{r_{*}} T^{-2} |L_{N} - L_{r}| dr = \frac{g}{c_{p}} \int_{r_{*}}^{r_{2}} T^{-2} |L_{N} - L_{r}| dr$$

$$+4\pi \int_{r_{1}}^{r_{2}} T^{-1} r^{2} \rho \epsilon_{\text{eff}} dr. \tag{9}$$

Here, the "effective dissipation" $\epsilon_{\rm eff}$ is given by

$$\epsilon \to \epsilon_{\rm eff} = \epsilon (1 + gK_C H_P^{-1} \epsilon^{-1} \nabla_{\!_{\scriptscriptstyle H}}) \equiv Q \epsilon > \epsilon.$$
 (10)

With $\epsilon=0$, equation (9) becomes the relation first introduced by Roxburgh (1978). However, ϵ cannot be zero. General physical arguments and recent work by Rosvick & VandenBerg (1998) show the importance of ϵ in stellar structure calculations. Since the second integral in the right-hand side of equation (9) is increased by the presence of ∇_{μ} in $\epsilon_{\rm eff}$, the OV extent r_2-r_* , specifically, the integral from r_* to r_2 need not be large in order to compensate the left-hand side. Thus, ∇_{μ} decreases the extent of the OV. This is a second way of proving the physical content of equation (1). Finally, and even more explicitly, we employ a relation for the decay of the velocity w in the OV, due to Unno, Kondo, & Xiong (1985):

$$w(r) = w(r_*)e^{x\ln(P/P_*)}, P < P_*,$$
 (11)

where r is an arbitrary point in the OV region, $r_* < r < r_2$. The

key parameter is x, which can only be provided by a turbulence model. If we consider a polytrope of index m, $P \sim r^{-m}$, then

$$w(r) = w(r_*) \left(\frac{r_*}{r}\right)^{xm}.$$
 (12)

Since by construction OV = $r_2 - r_* \ll r_2$, if we take $r = r_2$, we have

$$w(r_2) = w(r_*) \left(1 - \frac{OV}{r_2}\right)^{xm} \approx w(r_*) \left(1 - xm\frac{OV}{r_2}\right).$$
 (13)

Since $w(r_2) = 0$, the extent of the OV = r_2/xm and since $H_P = r_2 m^{-1}$, we finally derive

$$\frac{\text{OV}}{H_p} = \frac{1}{x}.$$
 (14)

From the work of Unno et al., one can deduce that under the scaling $\epsilon \to Q\epsilon$, the variable x scales like

$$x \to Qx,$$
 (15)

and thus in the presence of a ∇_{μ} , the decay law (14) changes to

$$\frac{OV}{H_0} = \frac{1}{x} \frac{1}{O},\tag{16}$$

and thus, finally,

$$\frac{\text{OV}(\nabla_{\mu})}{\text{OV}(\nabla_{\mu} = 0)} = \frac{1}{Q} < 1, \tag{17}$$

which is the desired result: the μ -barrier increases the rate of dissipation of available turbulent kinetic energy and leads to a decrease of the extent of the OV. Of course, without the solution of the pertinent equations one cannot evaluate Q but that was not the purpose of this Letter. To compute both ϵ and K_C one needs to solve the complete dynamical problem. An attempt in that direction has recently been formulated (Canuto 1998).

I would like to thank R. Stothers for useful discussions on this topic.

REFERENCES

Canuto, V. M. 1997, ApJ, 489, L71
————. 1998, ApJ, submitted
Canuto, V. M., & Dubovikov, M. 1998, ApJ, 484, L161,
Kato, S. 1966, PASJ, 18, 374
Langer, N., Sugimoto, D., & Friecke, K. J. 1983, A&A, 126, 207
Ledoux, P. 1947, ApJ, 105, 305

Roxburgh, I. 1978, A&A, 65, 281 Rosvick, J., & VandenBerg, D. A. 1998, AJ, 115, 1516 Schwarzschild, M., & Harm, R. 1958, ApJ, 128, 348 Stothers, R. 1970, MNRAS, 151, 65 Umezu, M. 1998, MNRAS, 298, 193 Unno, W., Kondo, M., & Xiong, D. R. 1985, PASJ, 37, 235